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Abstract

This is a study of the mechanisms and results of reso-
nance absorption in warm and cold plasmas. Maxwell's equa-
tions and the plasma fluid equations (neglecting ion motion
and assuming wavelike solutions in the x-direction) are
linearized. The linearization is accomplished for a plasma
with a positive number density gradient in the z-direction.
Second-order equations are derived from the linearized set.
These second-order equations are differenced and solved in
the z-direction for the TM mode of propagation using a two-
sweep algorithm with zero and radiation boundary conditions.
The characteristics of the field quantities are investigated
at various temperatures. Further, Nl (the plasma wave),
the temperature of the hot electrons, and the nonlinear
Ponderomotive force are calculated. Finally, resonance
absorption by the plasma is calculated and peak absorptions
of 50% are observed for both cold and low temperature warm
plasmas. The validity of the assumptions is discussed
referencing both power and temperature concerns. Possible
nonlinear and time-dependent modifications to the theory
are discussed. Landau damping is derived and its limita-
tions considered. The two-sweep algorithm is found to give
accurate results and its amenability to computer application

makes it a desirable method.
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I Introduction

In this thesis the propagation and absorpt on of EM
waves in cold and warm inhomogeneous plasmas are studied.
It will be useful to start with a physical description of
the fundamental concepts.

An electromagnetic wave can freely propagate in
homogeneous plasma in which the natural frequency of the
plasma, wp = (4nne2/m)l/2, is less than the frequency of
the wave, w. Here n is the density of the electrons in the
plasma, e their charge, and m their mass. When the fre-
gquency of the wave is less than the plasma frequency, the
wave doas not propagate but decays exponentially in the
plasma. This exponentially decaying wave is called an
evanescent wave.

An interesting problem occurs in an irhomogeneous
plasma, then, when an electromagnetic wave is made to prop-

agate from an underdense region (v > wp) to an overdense

region (w < wp). It is the interaction of the EM wave with

|
1

0 gy L

Fig 1. Density ng as a Function of z in the Case of
Linear Density Gradient
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Fig 2. Geometry for the Incident Electromagnetic Wave,
TM Mode
the plasma in this situation that is the subject of inves-
tigation in this thesis.

Consider an EM wave normally incident on a plasma in
which n is increasing with z and independent of x and y as
shown in Figure 1. For a wave propagating in the z-direction,
reflection occurs at the plane in the plasma where w = wp.
This plane is called the critical surface. For the normally
incident wave, the critical surface is analogous to the
classical turning point (reflection roint) where c0526 = wz/w
The mechanism by which energy is lost by the electromagnetic
wave is collisional damping. This loss is insignificant
when the plasma temperature is above 600 ev.

Significant losses can occur, however, when the EM
wave is obliquely incident (at an angle 5 with respect to
the normal). This situation is shown in Figure 2 for light
propagating in the TM mocde. In this mode of propagation,
the EM wave has a component of its electric field pointed

along the plasma density c¢radient. For this reason, the EM

2
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Fig 3. Geometry for the Incident Electromagnetic Wave,
TE Mode
wave interacts strongly with the plasma at the critical sur-
face. This interaction leads to an energy loss from the EM
wave that is called resonance absorption. A model of this
process is the specific objective of the following work.
Figure 3 depicts the alternative obliquely incident EM

wave, which is propagating in the TE mode, and is not reso-
nantly absorbed because no component of its electric field
lies along the density gradient. As will be shown, this
wave is reflected with no absorption at the classical turn-

ing point which is on the underdense side of the critical

surface. The TM mode also undergoes reflection at this
plane; however, the z-component of the electric field
becomes an evanescent wave which "tunnels" into the critical
surface. Here, the EM wave becomes very large and excites
an electron plasma wave. The enhanced EM wave loses energy
through collisions and the plasma wave is damped without
collisions by interaction with electrons having a thermal

velocity equal to its phase velocity. These losses are the




{ source of resonance absorption. The results of this study

that demonstrate these ideas are included in Chapter IV

L g Lt

3 along with additional process descriptions. The absorption

el

of the EM energy by the electrons at the critical surface

' and the subsequent transfer of this energy into the random
thermal motion (temperature) of other electrons will also be
developed and discussed in Chapter 1IV.

The linear variation of density of a plasma models the
plasma surrounding a laser fusion target which has been

slightly heated to create a thin enclosing plasma. The

electromagnetic wave considered is then the laser beam used
to heat the plasma. Resonance absorption is expected to
contribute significantly to the heating of the pellet
because collisional losses are quite ineffective as the
plasma (target) temperature increases.

The aim here is to develop a simple model of the
absorption mechanisms and effects using a minimum of com-
puter space and time. The effort will be described as

. follows. 1In Chapter II the equations to be solved which

describe resonance absorption in a linear plasma are derived,
as is the term that determines the damping of the plasma

waves (Landau damping). In Chapter III the numerical meth-

. y .

ods ‘for solving these equations are discussed, and the

results are presented in Chapter IV. CGS (Gaussian) units

WS W I

‘e
» ot

will be used throughout this paper to enable comparison to

related research.
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II Linear Modeling

, T™wo types of plasmas were analyzed. First, a cold

electron plasma with no electron pressure and then a plasma

of warm electrons with a pressure gradient. 1In each case,

4 the ions were assumed to be immobile and an electron-ion

| collision probability was included. The plasma density
gradient necessary for resonance absorption was chosen as
a linear ramp in the z-direction. The linear analysis was
achieved by using Maxwell's equations and the plasma fluid
equation for electron momentum. This chapter will outline
the equations used and assumptions made in order to obtain
the wave equations solved in the plasma. Complicated
derivations of equations included in this work are contained

in Appendix A.

o Linearizing the Equations

Maxwell's equations and the continuity and momentum

equations for electrons are (in Gaussian units):

o

: dn -
', ac * v nv = 0
3 dav
i ma(zE + VW + V . VV) + Vp = enE
. ¢ dB
‘-’ = - }....:
" 4 1 dE
' = _TT 3 = =
' VxB = c 3 tcax
. v - E = 4rmen
v.-B = 0 i
L

*
!
¢
?




| further

b j = nev

! (2.1)

SR P = YTn )
3 :
g ! where

v is the electron-ion (inverse bremsstrahlung) collis-
ion frequency

n is the electron number density
V is the electron velocity
m is the electron mass

Y is the ratio of specific heats (3 in this one-dimen-
sional problem) |

T is electron temperature in ev

is electron current

.

is magnetic field intensity

|

It

is electric field intensity

o

is electron charge

P is electron pressure

Linearizing approximations were made assuming wavelike

solutions as follows:

L8

: -
-

e—iwt + iksx

! : n = no + nl
! ] _ -iwt + iksx h
\.. 4 Y. - .Y]_e
Y3 (2.2)
"J _ . -iwt + ikSX
', E = Eo + Ele
(g _ -iwt + iksx
3 .B_ - EO + .Ele
where

s is the sine of the incident angle 6
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Hence, steady-state solutions were the objcct of the inves-

tigation and oscillations around equilibrium values the

result.

TE Mode Solution

The transverse electric mode does not exhibit resonance
absorption because its electric field is perpendicular to
the plasma density gradient. This can be seen by examining
the wave equation for E_. To do this, the above quantities
(Egs 2.2) were substituted into Egs (2.1) and resulted in

the following set of equations for the TE mode.

. s
Ey = 1ka
sEy = Bz
iksE, + E' = 4mn.e
Y Y 1 (2.3)
--iksBz + B! = -ikeE
! - =
anon1 ang 0
lks(n0 - nl) = 0
where
a = i4meyT
cm(w + ivL) !
' denotes differentiation with respect to z
and
2,2 .
e = 1~ mp/w (1 + iv/w) (2.4)
Also, w_ is the local plasma frequency which is given by:
2
4tn_e
) m
7
R . T B Voo %, T E - .. ——— . _ - N
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{ From these equations was derived the fact that Nl = 0, and

that the second-order equation for E is:

' By + k2(e - sHE 0 (2.5)

Yy

Thus, there is no plasma wave generated and no resonance

absorption occurs in the TE mode. This fact and Eq (2.5)

are presented in Reference 1.

TM Mode Solution

A resonance is expected for the TM case where the
electric field has a component para’lel to the plasma
density gradient. This, too, can be gleaned from an exami~
nation of the second-order equations derived from Egs (2.1).
First, the equations were solved for the TM mode with a
plasma number density gradient again in the z-direction
and an electron temperature. The resulting four equations

" model linear resonance absorption phenomena and formed the

basis for this work.

. _ v o s
* - I = . - .
:" 1keEx alksnl B
i . _ (2.6)
’ —1keEz + aBnl - an; = iksB
4
s [ ] —
t; 1ksEx + Ez = 4Trenl
‘ where 8 = ﬁL na and all other variables have been previously
33 0
defined.




Consequences of the Density Profile. Ns mentioned

earlier, the plasma density variation was chosen as a linear

ramp profile. The number density increased from virtually
! zero at the front face to 1.12 x 1019cm-3 two free-~space
wavelengths into the plasma. At that point, the plasma
frequency (wp)equaled the frequency of the incident .00l cm
(10 pm) light. This is the point at which resonance (for-
mation of plasma waves) occurs and is called the critical

surface. The linear variation in number density made it

possible to write:

n, = ng (z/L) (2.7)
B = 1/z
_ (2.8)
= € = 1-2/(L+ izv_/w)

n_ is the value of n at the critical surface

. v _ is the value of the electron-ion collision freguency
at the critical surface

I. is the distance to the critical surface

z is the position in the plasma (measured from the
front face)

A

Cold Plasma. For the cold plasma case, the terms

invelving T in Egs (2.6) are set to zero. This is the same

e o

as ignoring the term "VP" in the momentum equation and

results in the following equations:

AP, L

r
r

ks -
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v

. _ oL
ikB = Ex 1ksEz
ikeE = B!

X (2.9)
-1keEz = iksB
. [ —
1ksEx + Ez = 4nenl

where all the terms have been previously defined.
It is inconsistent to allow the electrons to have no
temperature and assume a finite collision frequency since

the two are related by (Ref 2:30, Eg 3.4):
v/w = 24.7 n/ng(T>?) ; T in ev (2.10)

However, the v/w damping must be included in the equations
to avoid an infinite resonance condition at the critical
surface. Later, v/w and Eq (2.10) will be used to obtain
an effective temperature. Unless otherwise stated, v/w
was chosen small enough so that only resonance absorption

was observed.

Second-Order Equations

The purpose of the preceding derivations was to obtain
linearized equations which could be easily converted into
wave equations for the quantities of interest. The alge-
braic manipulations resulting in these equations are
included in Appendix A and here, only the second-order equa-
tions will be presented.

Only one second-order equation was necessary for the
cold plasma. It was written in terms of Ez and took the

form (Ref 1:572, Eq 3.1):
10




EL + k2 (e - sz)Ez + [E,(tne)*]' = 0 (2.11)

For the warm plasma, it was necessary to write two

coupled second-order equations. Two sets of these were
derived from Egs (2.6). The first set couples Ny and E,:
E" + (k% - k%s?)E. = (4me + aik)N! - aikBN, (2.12)
z z 1 1 :
and ‘
aN” + (a' - aB)N! + (4meceik ~ a'B - akzsz)N = ~ike'E
1 1 1 z
while the next couples B and EZ.
i Baks? 2.2 . ike
Ep + (-8 + —=S5—)E! 4+ (-k“s® + EE,
(e + aiks™)
3 ]
= (- 155 + kzs)B + sBB 5
(¢ + aiks™)
and (2.13)

' s el .y 2
g' + ia'ks™ + aBiks )B' + (k2€ _ kzsz)B

(¢ + aiks?)

Bu_(

{ca' + aBe - oe')
(e + aiksz)

= L
Ez iks

where

iTy
cnw (1 + ivL/w)

The warm plasma approximation is achieved by retaining
the VP term in the electron momentum equation. This resulted
in the terms containing vL/w in Egqs (2.6) which appears in o
of Eqs (2.13). This term (vL/w), which has thus far remained

undefined, is an attempt to model Landau damping of the

11
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plasma wave and will now be explained. Ginzburg's second-
order equations (Ref 3:397, Egs 20.35) for E, and B are
similar to Egs (2.13) although they do not include Landau

damping.

Landau Damping

That there is Landau damping of plasma waves has been

derived from the Vlasov equation:

daf

at eE _ df
at

+ vV « V£ + F W = 0 (2'14)

There is linear and nonlinear Landau damping. The latter
is associated with particle trapping when n; = ng and is
not within the limits of linear theory. The derivation of
Landau dampirg from Vliasov's equation is discussed in detail
by Chen (Ref 4:213-240) and Ginzburg (Ref 3:122-132), and
I will follow Chen's method closely. The physical interpre-
tation of linear Landau damping was hinted at earlier.
Simply, the plasma wave is damped without collisions by
exchanging its energy with particles satisfying the rela-
tion IV—Vz|t < % = % . These are the particles in the
distribution that have not yet traveled one-half wavelength
with respect to the wave. Hence, initial conditions, such
as the assumption of a Maxwellian velocity distribution,
are important.

The form of Landau damping employed in this work was
derived in the following way. First, wavelike solutions

to the Vlasov equation are assumed with first-order pertur-

bations on the equilibrium values. The solutions take the

form: 12

i
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1

-

e

lae-

f(r,v,t) = £o(v) + £, (x,v,t) ' (2.15)
where
i(k. - wt)
flae 2

Vlasov's equation then becomes:

e df0
- 1wfl + lszfl = I‘E EZ aTI_z— (2.16)
giving:
£, = . dff/ivé (2.17)
m ® 2V

From Poisson's equation ignoring Ex:

. - - 3
ikE, = = 4men; 4re ffffld v (2.18)

For a one-dimensional problem, the dispersion relationship

becomes:
f;_ o
1 = B f dfo/de/Vz-w/k)dvz (2.19)
z

-0

"

So, for large Vz and small damping, the dispersion relation
results from an integration along the real axis plus a
semicircle resulting from the integration around the pole
in the complex V, plane at v, = w/k. Thus, the dispersion

relation can be given by (Ref 4:216, Eg 7-56):

ﬁ © Af /av_ indf
1= 2p f o AV, g (2.20)
W -0 A 2 V =u)/k
2 2
where 2

P is the Cauchy principal value (—% in this case).
W

13
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The imaginary part of this dispersion relationship account-

ing for the wave damping is:

daf
e 2,2 0
l = 1nmp/kz HV; (2.21)
Vz=w/kz
for a Maxwellian:
2 2
d o _ 2VZ exp(_vz)
4 3 3
z /T V + n Vth
Therefore, since ki = vi/vi and we prefer not to make the
substitution w = wp
V¢ 3/2 —V¢
-im(w/w_) = l.88(v—— exp(v—— = vL/w (2.22)
P th th

where
V, has replaced VZ as the phase velocity of the wave

¢

The wave equations for Nl and E_ were presented earlier.
The wave number in the z-directicn (kz) for these waves was

determined as:

k,(z) = k /e(z) / AT /mc? (2.23)

where
k = w/c

The complete derivation of Eg (2.23), including assumptions,
is included in Appendix A. The wavelength and phase veloc-

ity of the longitudinal waves were determinad directly from

14




kz' The desired result, vL/w was then obtained from Eqg
(2.22) as a function of z throughout the plasma and is
shown in Figure 4. Note that VL/w is temperature independ-
ent, since in the ratio V¢/vth each quantity has a Tl/2
dependence. Past the critical surface, the wave is expo-
nentially attenuated by & so Landau damping is not tediously
modeled there.

Still, the expression for Landau damping Eq (2.22)
fails when V¢ > Vth’ and V¢ = 2Vth when € = .4 or about
halfway into the plasma. In that region, vL/w is large
which makes for a bad approximation, since the pole in the
complex integration (Eq 2.20) lies far from the real axis.
This, coupled with the fact that the plasma wave is gen-
erated closer to the front boundary for increasing tempera-
tures, causes a breakdown of the warm plasma model at high
temperatures. This will be discussed in Chapter 1IV.

Simply, for the bulk of the results presented in this work,
vL/w was taken as a constant in the plasma. Still, as will
be shown later, the correct form of vL/w is important.

Having presented here the equations, assumptions, and some

background, the next chapter will deal with the numerical

methods used to solve the problem.
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III Numerical Methods

Starting with the appropriate set of Egs (2.6) or (2.9),
1 second-order equations were derived that described the
fields inside the plasma. For the cold case, it was found
that one equation for E, could be written. But, for the
warm plasma, a set of two coupled equations was required.

The equations, (2.11) and (2.13), were solved numerically
inside the plasma subject to appropriate boundary condi-
tions. The values thus generated were used to solve for

the other field guantities, Nl' VO and the Ponderomotive

s
force. This entire procedure will be described in detail.

Gridding

The numerical solution began with a choice of a grid-
ding scheme. Due to the resonance expected at the critical
surface, very fine numerical resolution was needed in that

region. However, the same resolution was not necessary in

other parts of the plasma so a differential gridding

scheme was adopted. This affected the form of the central

difference approximations to the first and second deriva-

tives in Egs. (2.11) and (2.13).

e A

The problem of derivatives across these nonuniform

YA S W s

spaces was handled by adopting a technique used by Smith

v
' ..

(Ref 5:139). Beginning with adjacent nonequal mesh spaces:

h oh

o g

—
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- n-1 n n+l
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The Taylor series expansion of a function A(z) about a point

“n" can be written in two ways.

An+l = An + ¢hA' + %h2¢2A" + (terms of order h3)
(3.1)
A _, = A_-ha' + 1h%%A" - (terms of order h?)
eliminating A" gives:
2 2
ar o Pnel T ¥Ry - U - oAy (3.2)
oh(l + @) ‘
and eliminating A' results in:
an = ont1* %o T Py 7 0, (3.3)

6%n%/2 + ¢h%/2

The error in the second-derivative approximation is of
order h and is the driving source of numerical error.

The majority of the plasma was gridded with equal mesh
spaces in which case, Egs (3.2) and (3.3) reduce to standard
centered differences. Two mesh sizes were specified: a
very fine mesh spacing (on the order of %% X 10—2) near the
critical surface to resolve the resonance peak and a coarser
gridding (on the order of f% > I%ﬁ

plasma. The size of the mesh spaces (coarse and fine) was

) in the rest of the

determined somewhat by * ~ial and error. Each was reduced
until the field values and absorption did not change. The

coarser gridding was required to be smaller for the warm

plasma case due to the plasma waves present before the

18
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critical surface. In the regicn between the two extremes,
each mesh space was doubled until the spacing was slightly
less than or equal to the predetermined coarse grid maximum.
The remainder of the grid was then completed with equal

mesh spaces of that size.

Differencing the Equations

To implement the sweep method employed, the value of

each variable at mesh point "n" was assumed to be repre-

sentable by:

Ez(n+l) = PEzn + Q (3.4)

in the cold case, and for the coupled case

K + LB + M

Bz (n+1) Es ) (n)

(3.5)

NE + OB + R

B(n+l) z (n) (n)

where

K, P, Q, L, M, N, O, and R are constants

These equations were used in conjunction with Egs (3.2)

and (3.3) to difference Egs (2.11) and (2.13). The objec~
tive was to solve the differenced equations for the values
of the constants at each mesh point in the plasma subject

to the correct boundary conditions. Details of the deri-

vation are included in Appendix A.
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Application of Boundary Conditions

The equations were solved by employing boundary condi=-
tions at the front face and past the critical surface in
the plasma. The two-sweep method began by setting the
fields equal to zero past the critical surface in the
plasma. Two wavelengths past the critical surface was
chosen as the éoint where the fields vanished. This dis-
tance proved to be adequate to assure sufficient decay
since the wave was decaying exponentially in this region.
After applying this boundary condition, the constants in
Egs (3.4) and (3.5) were evaluated at each mesh point. The
sweep began at the point where the fields vanished and pro-
gressed point by point to the front face, where the radia-
tion boundary condition was applied. The radiation boundary
condition forced conservation of the fields at that point
and determined their values. Then it was a simple matter to
solve for the field quantities point by point using the

previously determined constants.

Zero Boundary Condition. The zero boundary condition

took the form:
Ez(4>\) = B(4x) = 0 (3.6)

which was interpreted as: P=Q=L=M=N=0=R=K=20

Due to this boundary condition, the constants not multiply-
ing a variable (M and R from Egs 3.4 and 3.5) were found to
be identically zero throughout the plasma. Therefore, they

were not necessary and the equations became:

20
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Ez(n+l) PEz(n) (3.7)
for the cold plasma, and
Ez(n+1) = KEz(n) + LB(n)
(3.8)
B(n+1) NE,(tn) * OB(n)

for the warm plasma. In other words, the fields were
assumed to vanish two free space wavelengths past the crit-
ical surface. This was accomplished by setting the con-
stants equal to zero at that point. This made some of the
constants unnecessary. The remainder of the constants

were then determined at each mesh point marching toward the

front face of the plasma.

Radiation Boundary Condition. At the front face, the

radiation boundary condition was applied. From the fact

that:

E. = E e1k(sx + cosBz)

inc 0inc
i +
Binc - Bo e1k(sx cosdz)
inc (3.9)
E = E e1k(sx - cos8z)
sC i)
sc
B = B eik(sx - cosbz)
sc 0
sc

it can be shown that

' 1 -
Esc + 1kcoseEsc 0

and ‘ (3.10)

' i =
Bsc + 1kcoseBSc 0

21
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i = E, + = B, :
and since E Elnc Esc and B Blnc + Bsc
E' + ikcosOE = 2ikcosfOE,
z inc
(3.11)
Bt + ikcos6B = 2ikcosHB,
inc

These (Egs 3.11) are the radiation boundary conditions
appropriate at the front face. They were applied to the
electric field in the cold plasma case and to the electric
and magnetic fields when they were coupled in the warm
plasma case.

The radiation boundary condition was applied by solv-
ing the Taylor series expansion of the field at the front
face simultaneously with the wave equation Egs (2.11l) or
(2.13). The equations are each solved for the first deriv-
ative of the desired guantity (EZ or B). Since each is
treated similarly, only EZ will be developed in this dis-
cussion. The solution is then substituted into the radia-~
tion boundary condition and that equation is solved for E,.
When Ez has been found, the forward sweep begins using
Egs (3.7) and (3.8). The complete derivation of the appli-
cation of the radiation boundary condition is contained in
Appendix A.

The forward sweep completes the calculation of the
differenced variable(s). Other quantities of interest were
then calculated using Egs (2.3) or (2.6). Plots of these
quantities are contained in Appendices B and C for both

cases and a discussion of the results follows here.
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IV Results

A wide variety of conditions were investigated and a
large body of results obtained from the two computer codes
written to implement the two-sweep algorithm just described.
In this chapter the major results will be presented. The
data from which these results were derived is contained in
Appendices B and C. The figures in these Appendices indi-
cate the spatial variation of important quantities in the
plasma. The gquantities investigated were the x and z com-
ponents of the electric field, the magnetic field, the
oscillation velocity of the hot (nl) electrons, and the
Ponderomotive force (time-~averaged Lorentz force or radia-
tion pressure). The collisional and collisionless (Landau
damping) absorption of the electromagnetic waves energy was
also determined as a function of the angle of incidence.

Some of the results, such as the percentage of the
laser energy absorbed by the plasma are independent of
power, barring instabilities, while others scale as the
electric field (nl and Vos)' Ponderomotive force is
directly proportional to power as is the energy of the hot
electrons (TH ev). The results will be discussed independ-
ent of power scaling and then the efrfect of power will be
considered. Temperature effects, such as Landau damping,
will be dealt with as they apply. Finally, the validity
of these methods will be discussed referencing both power

and temperature concerns.
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Parameters
Some parameters were not varied throughout the analy-
sis. They are now identified for reference and comparison

with other works.

Ez = gind
Einc = cosf

X

. = =1

inc
A = ,001 cm (10 ym free space wavelength)
w = 1.88 x lO14 sec_l

_ 19 3 L. .

n, = 1.12 x 107" /em”™ (critical number density)
kK = 21/) = 6283 cm *
L = .002 cm (critical length)

It is readily determined that Po' the incident power in
this analysis, was 120 W/cmz. As mentioned, linear power
scaling was employed to determine values of variables of

interest at current laser powers.

X

E. and B
Y

The field quantities Ex and By were calculated for
both cold and warm plasmas and are included in the Appendi-
ces for reference. Although E, does exhibit a peak at the
critical surface, its value there varies from only 2-4 esu

over all the cases investigated. The transverse magnetic
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field was virtually unaffected by the resonance at the
critical surface, and its peak in the plasma remained j
approximately 1.5 esu throughout the study. Since Ex does
not contribute to resonance absorption other than through
collisions, and drifts involving the magnetic field were

not considered, these two quantities were not of significant

interest and will not be further discussed.

Ez (Longitudinal Electric Field)

The magnitude and characteristics of Ez are of interest
because it is the component of the electric field that
excites the plasma wave and is responsible for resonant

absorption.

Cold Plasma. The longitudinal field in the cold plasma

exhibits a marked resonance at precisely the critical sur-
face. The magnitude of the field is inversely proportional

to the value of v/w. The fact that ]Ez] av/w was derived

max
by Ginzburg (Ref 3:388). Some comparisons were made with
the maximum electric fields predicted by other authors.
For various angles of incidence, results comparable to
those of Denisov (Ref 1:574) were observed. For example,
for sin® = .3; v/w = .002, |E_] = 52 and for v/w = .02,
max
|E,| = 5.1 at the same angle of incidence. The magni-
max
tude of Ez and its dependencies are much different for the

warm plasma.

Warm Plasma. Linear Landau damping, as well as colli-

sional inverse-bremsstrahlung, affect the longitudinal

25




y ; electric field in the warm plasma regime. £Es noted earlier,

temperature effects moved the resonance peak of Ez toward

the front of the plasma. The magnitude of the field at
resonance was also much less than that observed in the cold
plasma. The damping was more severe and the resonance
moved further to the left as temperature increased. The
fact that the field maximum decreased is not surprising
since the turning point of the wave varies with temperature.

The wave turns (is reflected) when:
€ = YT/craw (1l + ivL/w) (4.1)

Hence, for higher temperatures the wave is reflected closer
to the front of the plasma (at a larger ¢) and the evanescent
region becomes larger. This allows less of the evanescent
wave to reach the critical surface and initia%e resonant
absorption. The wavelength of this electrostatic wave (EZ)

is, not surprisingly, the same as that for n,:

A (z) = ) AT/mel /) (4.2)

This wavelength (kz) derived from kz (see Appendix A) was

observed in the study. It follows from Eq (4.2) that for

" &

higher temperatures, in regions where ¢ is small, the

S e s =

waveélength is greater than that of the incident light and

Az clearly approaches infinity at the critical surface.

For low temperature cases, the wavelength can be much

[}

shorter than the incident wavelength very near the critical

P
-

e

surface. Examples of this can be seen in Appendix C. For

-
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instance, one may compare the wavelengths of E, near the

critical surface in Figures C-8 and C-15.

Spatial Dispersion. To conclude this discussion of

the longitudinal electric field, the effect of spatial dis-
persion will be addressed. Ginzburg (Ref 3:389) suggests
that the use of a local value of £ will not be valid if the
electron encounters vastly different electric fields during
its travel in the characteristic time under consideration.
Ginzburg's equation for the distance over which Ez decreases
to half its maximum value in a cold plasma is (Ref 3:389,

Eq 20.24):
Az = L vc/w (4.3)

The results obtained here for the cold plasma obey this
relationship. This accounts for gridding difficulties
encountered as v/w was reduced because in addition to the
increase of IEZI , the scale length given by Eg (4.3)
decreased. The Szzle length is on the order of a Debye
length for the cold plasma when v/w = .002. The gradient
lengths observed in the warm plasma are clearly longer.
Figure 5 shows for each temperature at what power the hot
electrons (nl) will travel one scale length in one period
(%?). At powers higher than this, spatial dispersion should
not be ignored. The scale length referred to is the same
as that above, i.e. the distance over which E, decreases to

one~half its maximum value. The figure shows both the cold

plasma case and the warm plasma results for vL/w = .1. The
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results for the warm plasma when vL/u = .67 are not signif-
icantly different. Spatial dispersion will not be con-
sidered as a limiting factor in the models application.
Still, it warrants more study, and the above is offered as

both a notivation and a starting point.

)

The Plasma Wave (nl

A plasma wave exists because the electric field has a
component (Ez) along the density gradient in the plasma
causing charge imbalance and, hence, a restoring force.

The electrons oscillate at the phase velocity w/kz, where

kZ here is the same as the kZ derived earlier for E,. In
the cold plasma, the enhancement of ny at the critical sur-
face is so large as to cause concern over the linearizing
approximation ng >> ng. In the warm plasma, the wave gen-
erally has a smaller amplitude and is itself allowed to damnp
noncollisionally by exchanging its energy with colder elec-
trons in the body of the Maxwellian distribution. Thus,

the wave is a key performer in both the warm and cold

scenarios.

Cold Plasma. The cold plasma wave is very much like

Ez’ In fact, no second-crder equation was solved for n

ll
and .it was obtained by using the calculated values of Ez
in an equation derived from the four basic relationships

Eqs (2.9).

- _ '
n, = € Ez/s4ne (4.4)
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Clearly, ny behaves much like E, and, like B it is pre-
vented from becoming infinite at the critical surface by
collisions. The plasma waves relationship to Ez leads to
the cold model predicting increasing ny for increasing tem-
peratures (decreasing v/w). Figure 6 shows the variation
of n,y with temperature for the cold plasma, and the warm
plasma with vL/w = .l. The figure demonstrates this by
detailing for what power and temperature the peak plasma
wave amplitude (near the critical surface) equals

9 -3

1.12 x 101 cm (the value of n_. at the critical surface).

0
This further serves to show when the linearizing approxi-
mation ny >> ny is valid. The region of validity is shown
on the figure for both the cold and warm plasma models.
The additional restriction on the validity of the warm
model will Le explained later. The characteristics of the

warm plasma electron wave will now be explored.

Warm Plasma. When temperature effects are introduced,

ny is reduced greatly in magnitude and spread over a larger
portion of the plasma. For high temperatures large waves
exist far from the critical surface and may even impinge

on the front boundary. This translation of the wave from
the critical surface to the boundary occurs because as the
electron temperature increases, the hot electrons created
at the critical surface are allowed to transfer their
energy more readily to the other electrons in the distri-
bution. This suggesté that a temperature dependent as well

as spatially dependent Landau damping 1s appropriate.

30




{
{ z —’J.._-_f_.'—'"'f"'—_.'_": T , T TS Tl T IR
J——— T TIoT T ommimma
(I : A [
T i 7 r" { ~ N %
3 T T
|! i
2 | RN
N e gt e e It ametel |
A v S ik e
(2) =5 EREL
- /' REGION OF VALIDITY |
O / _ WARM PLASMA MODEL , ! |
«—t sz oo I e T e e e “f‘:“—.‘.‘
= e T e S =7
R S S N 1 A S N S
o) cy I IREs :
~ A ) 5 | {1 |
¥ \ - 1 l/
Fo ]\ et L L
== = = : ERate
%) ] mam gyl paumaiori SR e DY
r B = (3) 1 R
> \ 7 T L RRES
« \ AR EEREEN
= U
f
o © e e
m p “-'—‘ — u;_—_:::_:_,__ — &—L——'--]
= = ! BESMNER PRI N R B ' -
[ ) 1} A 1y 1 L d —teb L
0. \ {/ AN I B ‘
Y ‘% RN
= “\*’_ﬂ_ﬂ_*__.! ’ 1 w!“ l H
- o s " T e gusien ot
i e
—dd R N R ! RN
\ SR Voot o ; l 1 'jJ#
. (17} : R |
i e AL I 1]
P — 3 REGION OF {Z =i e e e
. o 3 VALIDITY oo ; e a— R |
) JCOLD PLASMAI—/ri— PRSI SRS
3 ] wmobEn T I R B R
¥ I BN T
1 j T C
' . IR i
N o ! ‘ : : 3 I IS
t. — R IR AOR] ' | S g ant T i uan mar i
\ =1 0 1 2
, 10 10 10 10

[l L8

ELECTRON TEMFERATURE (KEV)

Fig 6. Regions of validity (Indicated bv Arrows) for the
Warm and Cold Plasma Models. Regions are pounded
by the following curves representing limiting
assumptions: Curve 1; cold plasma rj=ng; Curve 2;
warm plasma (v;/w=.1) ny=ng, Curve 3; warm plasma
(vL/w=.l)VH=VC.

31




..

AN

A~ - e »

lﬁfﬁiﬁt

LR, R S - ——— e -

Nevertheless, as mentioned earlier, the clectron plasma
wave should be greatly attenuated in the vicinity of the

front face because VH = VC there. The reason for this

(discussed in Chapter II) is that when VH = VC'

the integration of Eq (2.19) lies far from the real axis

the pole in

and contributes a large imaginary part (damping) to V-
This effect is ignored in the derivation of Eq (2.22) and
thus Figure 4 does not show this large damping and it was
not incorporated into the model.

In the warm plasma, as in the cold, n, was derived
from the field quantities. In this case E,, B and Egs (2.6)
were used. The equation derived was:

b 2

n, = (B, + sB'/c)/ (255 4 are) (4.5)
and centered differences were used for the derivatives. 1In
addition to describing the variation of the peak of ny with
temperature for vL/m = .1, Figure 6 shows where the velocity
of the hot electrons equals that of the cold. The signifi-
cance of this has been discussed, and the plot establishes
a lower bound on the region of validity of the warm plasma

model. The plasma's absorption of the electromagnetic

energy will now be considered.

Absorption

Two methods of absorption of electromagnetic energy by
the plasma were analyzed. They were collisional (electron-

ion inverse bremsstrahlung) and collisionless (Landau

32




.

.,

L AR g e

Aﬂfifﬁ_

- ! ’.
S AN

damping of the plasma wave). Other absorption mechanismns,
including instabilities, were ignored.

The power absorbed was calculated by comparing the
reflected electric field at the boundary of the plasma with
the incident field. The reflected fraction "R"” was derived

in the following way. Since:

E = E - E. (4.6)

z z z

where
Ezc is the scattered electric field at the front face
EXPC is the incident field (sin)

and EY° s the value of the field at the front face

A

The value of Ezc is determined because the values of the

total and incident field are known. From geometry:

ESC = ESC/tans (4.7)
and thus
“S2%sc Eic Eic*
R = Z§;§;;;’ or —~;;;§g~ (4.8)
where

<S_> is the average value of the Poynting vector in
the z-direction

This determines R, the percent of the incident field

reflected.
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The absorption of the laser power varics with the angle
of incidence. As the angle of incidence increases, the
classical turning point moves toward the front of the
plasma, and the longitudinal electric field travels further
through the evanescence region before reaching the critical
surface. For small angles, E, is the dominant field and
electron motion is nearly parallel to the density gradient.
Hence, the electrostatic charge separation is small (Ref 1:
574). Therefore, an angle of maximum absorption is achieved
between these two extremes. It is accepted theoretically
(Ref 3) and has been proven experimentally (Ref 6) that this

angle lies between 2C° and 25° for the critical length under

consideration. Although the absorption of the field in cold

and warm plasmas has somewhat the same magnitude, the
methods of absorpticn are different. This will now be

explained.

Cold Plasma. The energy absorption in the cold plasma

is due solely to the collisional damping of E . This reso-
nance absorption is shown in Figure 7 to have a maximum of
about 50% at 18°. This is in agreement with cold plasma
work in general and for a low temperature warm plasma
investigated by Forslund (Ref 7) using methods similar to

those employed in this work.

Warm Plasma. The warm plasma absorbs energy from the

electrostatic wave through electron-ion collisions and

also as the plasma wave is Landau damped. As can be seen
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from Figure 8, the absorption due to Landau damping appears
to compensate for the reduction in magnitude of E, and the
consequential reduction in electron-~ion collisional absorp-
tion. Absorptions of nearly 50% were seen for this low
temperature case (T = 637 ev) which is similar to the cold
plasma results and those of Forslund (Ref 7). However,
absorption results for the warm plasma are highly sensitive
to the form of Landau damping used, especially at high tem-
peratures.

Modeling Landau damping as a linearly increasing func-~
tion of z with a maximum, as it appears in Figqure 4, proved
unsuccessful. This attempt was curtailed when widely dif-
fering absorptions were attained for only small variations
in the slope of the linear section. This can be explained
by looking at the different number of electrons (Nl) that
are heavily damped between two cases (two different slopes).
Then, absorption would be a trade-off between this energy
exchange with electrons and the propagation of the wave
away from the critical surface. For example, at large
angles of incidence and high temperatures, anomalous absorp-
tion occurred due to the closeness of the plasma wave to
the boundary and the field structure there. 1In one case
(T = 5100 ev and 8 = 1.1 radians) dgreater than 30% absorp-
tion was observed.

For the above reasons, it is doubtful that anything
concrete can be said about absorption due to Landau damping

at high temperatures until some of the assumptions made in
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deriving it are relaxed. However, thesc rosults lead one
to believe that Landau damping should be temperature

dependent.

Ponderomotive Force

The Ponderomotive force is a nonlincar force caused by
the gradient of the electric field. As one can see from
Figure 9, it is large at very low power densities and,
including its effects, might be the first thing one would
suggest as an improvement to this steady-state model. The
force is derived from the electron momentum equation by
Chen in Refs 4 and 8. His derivation is also included in
Appendix A of this report. Ponderomotive force is included

here as a result derived from the previously calculated

field gquantities EX and E,. The equation solved was:
°p Tt
FNL = T 75 16w (4.9)
W
where
FNL is the Ponderomotive force
o2 2 . 2.
and Es =E, + L, is 2<E™:

Thus, it acts on both ions and electrons, but is more
effective by the factor 2% ~n the el:ctrons.
The behavior of FNL is similar in both the cold and

warm plasma. In both, it exists primarily at the critical

surface. The negative force in front of the critical
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surface serves to pull electrons from the higher density
region to the lower. This results in the density profiles
observed in experiments (Ref 9) and modeled by theoreticians
(Refs 10 and 11). Evidently, the force causes a depression
in the density profile in front of the critical surface.
This new profile, when allowed to smooth, becomes a step
profile causing the plasma to go from underdense (wp/w < 1)
to overdense (wp/w > 1) in a very short distance. This
effect is modeled successfully in Ref 1L for an electron
temperature of 2 Kev. They observed a maximum Ponderomotive
force of 1.25 x lO3 ergs/cm4 at 120 W/cm2 while for 2.55 Kev
and vL/w = .67, a value of 1.5 x 103 ergs/cm4 was obtained
in this work with a linear profile. The Ponderomotive

force is very large in the cold plasma due to the steep
gradient in E,. Pigure 9 shows the Ponderomo_ive force as

a function of temperature for a power of 1013 W/cmz. The

plot also includes the thermal pressure force of the plasma

kTV(nO).

Hot Electron Energy (TH)

The velocity of the hot electrons is a concern because
they may escape the plasma without depositing their energy
if they get too hot. This would reduce energy absorption.
In fact, these suprathermal electrons have been observed

and have been given a great deal of attention (Refs 12 and

13).
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In this work the temperature of the clectrons was deter-
mined by their oscillation velocity (VOS). The Vos in the
cold plasma is the familiar eE/m(v - iw), while in the warm

plasma, additional terms appear due to the pressure gradient.

For the warm plasma:

v _ eE _ 1ksYTnl
os m{v - iw) nom(\)L - 1w)

N v
{Tnln0

nszv - iw)
0 'L

'
YNlT

= (vL - iw)mno (4.10)

where all the terms have been previously defined.

The pressure related terms in Eq (4.10) are small correc-
tions to the electric field term and it was discovered that
they could be ignored. However, the velocities plotted in
Appendices B and C include the ecffects of these terms, as
do Figures 5 and 6.

Note that Figure 6 shows at what powers and tempera-
tures the energy of the hot electrons is equal to that of
the background (cold) electrons. Since Landau damping
requires V@ >> Vipr this curve provides an important check

on the warm plasma model.

Validity of Assumptions

This is a discussion of the major assumptions made in
this report. An important assumption is that the icns are
immobile. Other concerns are the validity of the lineariz-

ing approximations and the effect of spatial dispersion.
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Both Ponderomotive and Coulomb forces act on the ions.
The Coulomb forces are small and can be ignored. The result
of the Ponderomotive force is the modification of the plasma
number density profile mentioned earlier. It has been
shown interferometrically that the Ponderomotive force can
modify the plasma density profile in about a picosecond
(Ref 10:184). This result was obtained by illuminating

glass microballoons with a Nd-YAG laser. Hence, the plasma
21 -3

was penetrated to a critical density of 10 cm ., The
experiment was conducted at a power of 1014 w/cmz, and the
profile modification was observed when FNL > FnP' The

time scale of interest in the stecady-state problem developed
here is on the order of 10_15 seconds, somewhat shorter than
that above. The Ponderomotive force, although large, will
not cause the ions tc move appreciably in lO_15 seconds.

The Ponderomotive force is shown in Figure 9 for a power of

13 dxmn

10 W/cmz. Since At ://——P 0., 27 at this power and at

wl

still higher powers, one can reasonablv say that ion motion
is insignificant in one time period.

The effect of spatial dispersion was discussed earlier
and will be sumnmarized here. It secems that the cold plasma
model will definitely be affected by spatial dispersion,
and the warm plasma model should also incorporate it for
application of the theory at powers higher than those indi-
cated in Figure 5. Still certain density profiles could be
found for both the cold and warm cases where the cffect of

spatial dispersion would be minimized (longer critical
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lengths and larger collision frequencies inmadiately come
to mind).

For the purpose of this work, two concrete limits were
chosen on the validity of the models. For each temperature,
these factors limit the powers at which the models can be
applied. The first factor is the validity of the lineariz-
ing approximation n, << n, . For powers greater than that

1 0

at which n, = n,. this approximation is invalid. There is

1 0
no lower limit placed on the powers for which the cold
plasma model is applicable. The warm plasma is limited by
Landau damping to powers where the velocity of the hot

electrons is greater than the velocity of the cold. This

is also shown on Figure 6. Spatial dispersion remains as an

additional concern.
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V Conclusions

The linear models of cold and warm plasma resonance
absorption developed here give results comparable to those
obtained by other theoretical means and experiments. The
paper serves as a collection of many facts, theories, and
ideas about resonance absorption. The results indicate
that the numerical methods are sound and the method was
found to be conservative of computer time and space. When
ion motion is ignored, the steady-state method is applicable
to powers of interest in today's fusion pirogram. Their
respective areas of applicability are indicated in Figure 6.
Correct modeling of Landau damping and spatial dispersion
could strengthen or weaken the preceding statements. Because
resonance absorption is a more efficient way to absorb laser
energy than simple collisional absorption, lasers of fusion
devices should be positioned such that maximum resonance
absorption is achieved. Of course, it is not that simple,
since targets are spherical and uniform energy deposition
is desired for the implosion. Also, the ideal angle will
change with the density profile. Still, resonance absorp-
tion will play an important part in a laser fusion device,
and this work is only a starting point in the process of
applying the technique to the machine. If these models
are to contribute further in this process, they might be

improved in the following ways.
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Current work in the field should give cne some idea as

to what direction a follow-on study might take. 1In recent
works, there is little mention of Landau damping while ion
motion and subsequent profile-steepening have been investi-
gated. This suggests that a nonlinear analysis can be

used to more exactly model the warm plasma, and that time
dependence is also important. The large effect that Landau
damping had on the absorption of electromagnetic energy in
this study is additionally troubling. These suggest possi-
ble areas where an improvement on the current models can

be made.

An important improvement to the warm model would be
the ability to correctly model the expected final distribu-
tion function. This could be incorporated by using the
Vlasov equation instead of the momentum equation. If this
were done, the assumption of a Maxwellian distribution
could be relaxed and a bump~on-the-tail distribution func-
tion could pe used. Then, Landau damping could be tackled
in a straightforward manner and some of the problems
experienced here could be overcome. This would also allow
for an assessment of the interaction between the two tem-
peratures {(relaxation time) that has not been addressed
here.

More simple, perhaps, would be to relax the assumption
of immobile ions in a step-by-step manner. After one case
has been studied, the initial profile can be adjusted by

applying the ~ - >motive force calculated in that
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steady-state case and moving the particles. The new profilc
could then be illuminated and the procedure repeated.

A similar approach could be used to investigate non-
linear effects. First, the problem could be solved by the
methods herein. Then, the values obtained could be used to
solve Egs (2.1) to the next order. This nonlinear analysis
might prove fruitful if more accurate results were desired
or instabilities were a concern.

It would be useful to investigate the stability of the
two-sweep algorithm employed in this analysis and to deter-
mine its applicability to related sets of equations.

In conclusion, the linear modeling of warm and cold
plasma behavior gave results, including absorption, compara-
ble to experiments and other work on resonance absorption.
The behavior of the important quantities was detailed and
physically explained. Inmportant consequences of resonant
absorption were shown and the regions of theory validity

were established. Various ways to improve the models were

suggested.
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Appendi¥ A: Derivations

Linearized Equations from Fundamental Equations TE Mode

Equations:
dav
mn(z== + vwWw + V - V) + Yp = enE
dt =
- 1 dB
VxE = - o5&
_ Am 1 dE
VXB = =3 *oEt
(A.1)
Vv« E = 4mne
V-B = 0
J = nuneVv

For TE mode (sce

E = Eg, +

B = By, *

where quantities

equilibrium so:

and

Figure 3) assuming waveclike soclutions

iksx - iwt
E e
ly

B elksx - iwt + B + B e1ksx - iwt
1x 0z lz

with subscript (1) are perturbations abcut

~

d ; d s . -iwt
3z gyl plb gyk ; where I = &yO + Eyle
1 %oy, qw o, miet , 1 Bog
¢ dt c 1lx c dt
w -lwt
Py Blz >
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. _ _1ldB
therefore, since V x E = c ar !
. dB .
_4a -iwt _ d - _ 1 ""ox . -iwt
az Eiy az Poy = ~ ¢ g * ik By,e
dB .
4a -iewt | 4 - 1 0z : ~iwt
dx Eye * 3 EOy c Tat t 1k Bye
and:
- S g = iks (a.2
dz Ty X a.2)
sEy = Bz (A.3)
Now we must use
B = 4T 4, laE
VB = c J o+ c at
First, we will find j from the momentum equation:
s , Jmlwt -2iwt -iwt -2iwt
1wn0\le 1wanle + vnovle + vnlvle
_ ~2iwt -iwt ~iwt
= [enoE0 + enlEye + enlEOe + enoEle
dYTn .
0 _ dy -iwt
—3z iz ™ I/m

this gives upon neglecting products of second-order pertur-

bations
dyTnO
TengEy - g = O
-iwt . -2iwt .
mnovle (v ~ iw) + mnlvle (v - 1iw)
- : -2iwt . _~iwt -iwt
= enlElye + enlEoe + enOElye
d -iwt
- dz YTnle
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neglecting second-order terms and droppin: subscripts gives

_ -iwt ~-iwt d . -iwt .
novl = [enlEoe + enoEle - (Tnle 1/m{v - iw)
- ikE e ¢t
Y

therefore, since j = noevl

-ik + i4we2n i4meyTdn,n
iksB +~—d——B OE + 01
A dz "% cmfw + 1v) y cm(w + iv)dzn0

yTidne %M1

cm(w + 1iv) dz

This yields, when accounting for direction,
dB_17- ~ dn, n dn
. e S P : S0 1 e
[ 1ksBz + dz]] 1keEy3 + [a 3z o a dz]k
- iks(nl)i

this gives

de
~ iksB + —— = =~ 1ikeE
z dz y

(Ao4)

and for equilibrium values

dn,. n dn
o "1 _ 1. v -
a ~—a—z— 6-6 a —a—‘-z 0 and iks (nl) = 0
E" TE Mode

To find the wave equation for E;, substituting Egs

(A.2) and (A.3) into (A.4)
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. - lkS(SEy) + ik dz (- az Ey) = - lk-Ey

kszE -1 E" ~ keE = 0

Y k
;

‘ 2 2

E" + k“(¢ - s™)E = 0 A.5
‘ ¥ ( ) y ( )

Linearized Warm Plasma Equations from Fundamental Equations
T™M Mode

To find the four basic TM mode equations and eventually

second-order equations, we adgain begin with Egs (A.1l)

av

mn(zE + VW + V - V) + VP = enE
second order

neglecting products of other second-order terms and linear-

izing for wavelike perturbations

) 1 %0 . 1 %1 iks
T gV tvngVy t o g Y a T B1
e(n. + n.)
N 0 1
- m (EO + El)
SO
9_ n E = l .dP_O
M T 0=0 B dz
"' and
ap
s —2—(nE +n13)-9~1——iksp
4 - env. = 120 0=1 m dz 1
Vo, I1 01 v - iw)
S..\
z am + 1 dg A.6
*; from V. x B = =31+ 2 gt (A.6)
s |
t o«
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s

S v—"
2 dp )
e 1 iks
4 . _ 47 m (nlgo * oy edz e Pl) (A.7)
c o (v - iw) :
since,
- i(ksx - wt)
E = EO + Ele
and E has x and z components,
1de _ _ iwp _ iw
c dt c =x c -z (A.8)
where E. and E_ are the perturbed quantities (E and E_ )
X z Xy zy
Since we know that
ap
= _9
engEy =
giving
n. YT dn, -~
- 1 0
nlEO eng dz k (A.9)
from (A.6), (A.7), (A.8) and (A.9)
~ d(B, + B.,) . 2 n,YyT dn_ -
. 0 1" _ = 1 0
iks(By + Bk 3z SR crae iw)cm(eno az K
yn,iksT . dn. -« ~ ~
o syt 1 ;
e 1o g @ Kttt noEzk>

~

- lkExl - ;kEZk

so, for the perturbed cuantities

sttt cs
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dnl
- 1ksE2 + aBnl - a a7

now V X E = -

= iksB

or, for the perturbed quantities

and V - E = 4Tre(n0 + nl) vields

dEZ
iksE_ +
X

Cold Plasma: E; from Linearized Equations

dz

4nenl

Now we will derive the second-order equation for E;

in a cold collisional plasma beginning with Egs (A.10)

- ikEEZ = 1iksB

dB - _ ikeE and
dz X
Employing Eq (A.1l) gives

o da .dB,.
- iksE, + g7 [3;/1k€]

differentiating

- 1k£Ez

yields

dB

dz

0]~

iksB

de
Gz *

dE
=)

dz

1kB
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therefore
dE
.2 d .de 2 ,. _ ,
iks EZ - d_z‘ [a; + Ez—/lkel = lkEEz
multiply through by ik
E
2 d z de w
k (S e)E - a; ? '—; + EZ 0
clearly,
E
_z de _ '
— & - Ez(Qne)
2 (E_(tne)'] = [E_(fne)'l’
dz z z
and thus
k%(e - s®)E_ + [E_(fne)']' + E" = 0 (A.13)
z z z :

Warm Plasma: Ni and E; from Lineariza=d Equations

Equations for the plasma wave in terms of the electro-
static component will now be derived using Eqgs (A.10),
(A.11) and (A.12). Eg (A.ll) gives

sikB + siksEz

v -
EX = S (a.14)

Eq (A.12) gives
1ksEX + E; = 4ﬂenl (A.15)

Eliminating E; between Has (A.14) and (A.15) and using Eq

(A.10.b) for iksB gives:
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dn

Sl 5 - 1 . 2., _— " .
( lkLLZ + asn, a a2 + 1iks Lz)lk + Lz = 4nenl
or
E" + (k% - k%s%)E. = (4me + aik)N' - aikeN. (A.16)
z z 1 1 ‘
Now for Nl:
differentiating (A.10.b) w.r.t.z
- ikaE; - ike'EZ + a'Bn + apn' - a'n' - an" = iksB'
(A.16)
from (A.10.a) and (A.12)
4ten - Eé
B' = aiksn + e[———1;——~4 (A.17)
substituting B' from (A.17) into (A.16)
-~ ikeE; - ike‘Ez + a'Bn + afn' - a'n' - an"
4ten - Eé
= iks aiksn + ¢ 3 ]
and
" ) 1 : 1 2 2
aN' + (a' - af)N! + (4neeik - a'2 - ak“s“)IN
1 1 1
= - ike'Ez (A.18)

Warm Plasma: B" and E% from Linearized LCquations

Now we shall dcrive second-order equations coupling

By and Ez in the warm plasma. Beginning with (A.10.a)
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- ikEEX + gg
(A.19)

n = -
aiks

{A.12) and (A.19) one arrives at;

using
2.2 . . .
- ak®s“E_ + aiksE = - ikeE_ + dB/dz (A.20)
X va X
where
a - _a-
e

differentiating (A.20) w.r.t.z. and using (A.1ll) for E;

(ike' - a'kzsz)EX + (ike - ak2s?) (ikB + iksE_)

+ u‘iksEé + aiksE; = B" (A.21)
using (A.20) to eliminate E_ in (a.21)
- aikst! + B!
(ike' - a'k%s?) [ 2 s ] + (ike - ak2s?)
{ike - ak™s?)
= B" (A.22)

(ikB + iksEZ) + a‘iksEé + aiksE;

Using (A.12) to eliminate n and nl from (A.10.b) and using

(A.20) to eliminate Ex while emploving (A.11) to eliminate

E; from the result, onc cbtains:

P — ‘r')_.<rl .
. . afiks( l‘SI’Z) woikah!
- ikeBE, 4 — e T L
(ike - k“s™) {(ike = Ak s)
+ abB' + @ksz + 1k252E - AE" = 1iksB
z z Z
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- aE! + (' ifa"ks aB)Eé + (ak?s? - ike)E

(¢ + aiks”™) z
aBs B!

= (iks - akzs)B - >
(¢ + aiks”®)

(A.23)

Substituting (A.23) into (a.22) for E) yields for B" after

algebra.

1 3 1 2 : 2
v _ <€ + ia'ks® + (;LBlkS B+ % - k2528
(e + aiks™)
= Eéiks(ea' + aBe - ce')/ (e + aiksz) (A.24)

Cold Plasma: Differenced Equations Solved for the Constants
in the Plasma

Now we will difference Eq (A.13) for Ez in the cold
plasma employing techniques described in the paper. Eq

(A.13) can be written as;

d " -—
aB, ¥ 32 [Ezbz] tE, = 0

thus

" " + nll ] + il —
aE_+ Ezc bznz Ez 0
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where

Accounting for differential mesh spacing and substituting

Ehel = PEy * 4 and En = PpaaBpoy 95 gives:
bp b (l1-¢ p
a + <, + - 1 + 0
%y Qn Bn
2
_ nn ?.rz] . [bnd’ _ Q_}E
oy Bn oy Bn n-1
where
2.2
a, = oh(l + ¢) and Bn = ¢ ;
therefore,
bn¢2
o - ¢)/Bn
pn~—l cl
a B8
n n
qn—l <1
where
bp b (1- ¢
c, = la +c +- 22 . .0
1 n n Q a
n n

When the zero boundary condition is applied g(N)

oh?

2
°no_ 1 _
B Bn

(A.25)

(A.26)

(A.27)

is set to

zero, and the remainder cof the qn‘s become ¢ by Eq (A.27).

All the pn's are specified by Egq (A.26) and at the front
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face, the radiation boundary condition is applied. How that
boundary condition is applied follows.

Eliminating E; between the Taylor series expansion of
E  at the first mesh point, and the wave-equation (A.13)
one obtains:

2(15:2 - El)

= 2 1 _ 2. . '
0 = 5 h E + azE + czE + sz ‘

h 1

where a,, b and c, have been previously defined and

ZI

ll
means evaluated at the first mesh point. Using the radia-~

tion boundary condition for E' and the fact that B, = plEl +q
the above equation becomes

2(plE1 +qp - El)

h2

2 . .
- = OF - 3]
i (21kCOSLE.n lkCOSLEl)

+ aZE + CZE + b(21kcosOEin - 1kcosOhl)

1 1

(&3

Solving for El

2q
[—~l-- g(2ikc050EinC) + bZZikcosOEinc]

~ h2 h
El—--zp §
1 2 2ikcos? . !
- - —§»+ ——~E-—-+ az + c, = bzlkCOSO

h h
(A.28)

Warm Plasma: Difference liquations Solved for the Constants
in the Plasma

The first stcp in the solution process is to solve for
the constants relatiry adjacent field qguantities. Egs (A.23)

and (A.24) were solved in general as follows:
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alB“ + blB' + ClB = dlz' + ez

azz“ + b2z' + coz = dzB‘ + ezB sz = Ez
taking

P = fB_ + 9z +h

n+l nn n n n

I

-+
Bn+l kan * 2nzn Pn

(A.29)

(A.30)

when differential mesh spacing is applied to the derivatives

(A.29) becomes;

where

2.2 2
¢h(l + ¢) and D = ® ; + Q%,

>
Il
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Similarly, from (A.30);

d d a b
2 2 2 2 2
(‘A—“‘W‘Tx*kn“o“fn*“zrfn'ez)%
a a fa b b d
2 2. 2,2 - _2 Y -2
+(an D 5 A 9T R G- re —A—y'n)zn
= _?ﬁ.;.i%q)zz +__d_2_¢)2B
D A n-1 A n-1
ash b ad
2°°n 2 2
+ (’ B "A‘hn”“xpn) (.32)
Egqs (A.31) and (A.32) can be written as
OB, * Rz, = SpBhp *s%0 S
and (A.33)

+ + + i
TB uz VaZooq Vs respectively.

len—l
Since we kncw

+ and

n kn—an—l 2n—lzn~l + pn—l

zn = fn—an—l * gn—lzn~l + hn-—l

Egs (A.33) can be solved simultancously for the constants

k, 2, p, £, g and h.

B _ us - Rv and 2 - Qu - Ts

n Qu ~ RT n Qu - TR

where s and V are the right~hand sides of Egs (A.33).
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Clearly
. _ QV1 - 'I‘sl
‘n-1 Qu - TR
QvV, ~ Ts
_ 2 2
94-1 = TQu - TR (A.34)
- _ QV3 -~ 'I's3
n-1 Oou ~ TR
and
. ) us1 - va
n~1 Qu - TR
us., - RV
2 2
— P
Qn—l Gu = TR (A.359)
Ph-1 Qu - TR

Two equatior.s are solved for the radiation bcundary condi-
tion. They are derived as was [g (i.28) but they involve

both z1 and Bl'

h h 2

(kl 1 M by
R

L e e e e " I} = - 0
bllkcosJ + 3 cl + 1kcos>Bl

A h h.e
+ (—l 1 d.ikcos® = 1 1)21

hl 2 1 2
pl hl inc hl inc
= - = = a.21ik 0 - = i
( hl + 5 dq ikcos z, 5 blzlkcoseBy
+ ZikcosOB;nC) (A.36)
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. a

Lt

and
(;% + 2} d21k0058 - 2% ez)Bl
+ (;% - ﬁ; - 2% b,ikcost + 2% c, + ikcose)zl %
= (— % + r_} dzzikcosea;“" - }—lzl— b,2ikcosdz."® :
+ 2ikcosez;nf> (A.37)
where

hl is the first mesh interval

H, is part of z, (i.e. z, = leA +gyzy t Hl)

Egqs (A.36) and (A.37) can be written as

W.,B, + x

1B1 z; = X

171 1

It
(o

szl + xzzl

Since all the constants are known zl and Bl are obtained

simultaneously.

kZ from Ez

It is possible to derive the wave number and wavelength
in the plasma from the sccond-order equation. The equation

for E; in the warm plasma is;
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E; + <_ 6 + 18aks 5 )Eé + <1ks _ k252>Ez
(e + aiks”®)

= L <k25 - lk—S>B (A.23)
(¢ + aiks”)

for small o ignorinu all terms except for E, Eq (A.23)
becomes a simple differential equation with an oscillating

part determined by the coefficient of E,. which is:

(1 + iv_/u)
kz(————L——— - s2> (A.38)

YT/mc2

for vL/m small and neglecting 52 in Eq (A.38) the wave
number of the oscillating function is the square root of

the right-hand side.

2 -« ety AT/me? (A.39)

2

The wavelength %; is clearly determined also.

Ponderomotive Force (FNL) (Ref 4:257-58)

Beginning with the electron eguation of motion:

- e{E(r) + VxB(r)] (A.40)

3

D.alQn

<
]

assuming an electric field of the form

E = Es(r)coswt
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neglecting VxB of Ly (A.40)
del/dt = - eE(rO)

Vl = - (e/mw)E531nwt = drl/dt (A.41)

and integrating over time:

Srl = (e/mwz)Escoswt (A.42)

Since o, ies the initial position of the particle.

Expanding E(r) about r, one obtains;

0
E(r) = E(ro) + (é‘>rl « V)E _ + ...
r=r
0
from Maxwell's equation, Bl can be found as
VXE = - dB/dt
B = -1 VXE sinwt (A.43)
1 W si{__ )
r=r

0

now the second-order part of Eg (A.40) is

mdvz/dt = - e[(érl - V)E + V xBl] (A.44)

1

Substituting (A.41), (A.42), and (A.43) into (A.44) gives

after time averaging

dV2 e2 1
m<?11—> = - m z‘[(E . V)ES + ESX(JXLS)] = F

NL
(A.45)
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reducina by expanding the double cvrouss o fnct gives:

e2 2
= VEZ (A.46)
mw

m
t
1

P

NL

which is the force on a single eclectron. The force density

is found by multiplying (A.46) by ny- In terms of “p this
becomes:
wg VEi
Fye = 7 72 Ten (A.47)
W
. 2,2 o,
since wp/u = z/L in our plasma:
_oo oz g2
Fa = T Ten L s (A.48)
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Appendix B: Cold Plasma Data Curves

This appendix contains quantities of interest as a

function of position in a cold plasma for a power of 120

watts/cmz. Power scaling relationships are given in the

body of the paper. The curves are grouped according to the

collision frequency used. Each group contains:
EZ (E longitudinal) in e.s.u.
E_, (E transverse) in e.s.u.

X

3

N; the hot electron number density (cm ~)

Fur the Ponderomotive force per cubic centimeter
L 1

Vtransverse the velocity of the hot electrons due to

Ex in cm/sec
Vlongitudinal the velocity of the hot electrons due to
EZ in cm/sec

B the magnetic field in Gauss

Note that Vos used in the paper is tlie square root of the

sum of the squares of V and Since

transverse vlongitudinal‘
each group of figures is the same save the value of v/w,
collective figure titles will be given and the figures sim-~

ply numbered. The following are the titles:

Figures B-1 - B-7; Data for v/w = .002
Figures B-8 - B~14; Data for v/w = .008
Figures B-15 -~ B-21l; Data for v/w = .02

Please note that the legernd of each figure contains addi-

tional information.
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Appendix C: Warm Plasma Data Curves

This appendix contains quantities of interest as a
function of position in a warm plasma at a power of 120
W/cmz. Power scaling relationships are given in the body
of the report. The curves are grouped according to the
electron temperature and Landau damping coefficient (L.D.C.

or vL/w) used. Each group contains:
E, (E longitudinal) in e.s.u.

E, (E transverse) in e.s.u.

Nl/N0 or Nl/Nc the ratio of the hot electron number

density to the initial number density or to the

9

value of N, at the critical surface (1.12 x 10l )

0

Far the Ponderomotive force per cubic centimeter

Vtransverse the velocity of the hot electrons in the

x-direction cm/sec

v . . the velodity of the hot electrons in the
longitudinal

z-direction cm/sec

B the magnetic field in Gauss

Note that V°s used in the report is the square root of the

sum of the squares of Vtransverse and Vlongitudinal' Since

each set of figures is the same except for the value of VL/w
and the temperature, collective figure titles will be given

and the figures simply numbered. The following are the

titles:

90
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{ Figures C-1 ~ C-7; Data for vL/w =

‘ Figures C-15 - C-21; Data
- Figures C-22 - C-28; Data
! Figures C-29 - C-35; Data
Figures C-36 - C-42; Data
Figures C-43 - C-49; Data
Figures C-50 - C-56; Data

Please note that the legend of

tional information,

91

for
for
for
for
for

for

e —
.1 and T/mc? = .0005
.-9 and T/mc2 = .00125
vL/w = .1 and T/mc2 = ,005
vL/w = .1 and T/mc2 = .05
vL/w = .67 and T/mc2 = .00125
vL/m = .67 and T/mc2 = .005
vL/w = ,67 and T/mc2 = .01
vL/w = .67 and 'I‘/mc2 = ,1
each figure contains addi-

Figures C-8 - C-14; Data for vL/w
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